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ABSTRACT

In this work a foundation to the theory of hydroplaning is

laid and solutions to simplified models are obtained. The report deals

with the following aspects: hydrodynamics, tire elasticity and the

coupling between them.

The hydrodynamic problem is broken into three regions: inlet,

central and exit. Approximate equations for the central region including

the effects of viscosity, fluid inertia and side flow are derived.

Approximate boundary conditions for the inlet and exit are presented

and a break-up into simpler subproblems is made.

Several tire elastic models of varying degrees of complexity

are studied in view of the desire to couple them with the fluid flow.

Selected problems are numerically attacked and the results

are graphically presented. A computer program for the evaluation of

the pressure distribution and the load capacity for planar tires of

arbitrary prescribed and fixed shape is available now. A program which

in addition to that, takes in account a side flow estimate is also

operating. A solution obtained for another model brings out qualitatively

the effect of tire flexibility.

A number of other programs which take in account various

models of flexibility as well as a more complete side flow treatment

have also been developed. The results of some of the latter programs

are not yet satisfactory and further work is needed for their completion.
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NOMENCLATURE

A

b

B

C

D

f

F

g

G

h

h
ioo

h
co

h*

h
0

H

H*

H
o

H
oo

H

KD

KT

K
W

k

L

m

Integration constant

Half-width of tire

Width parameter = b/r ; Integration constant
O

Inertia parameter I/2 t)U_/(p t - pa )

Flexural rigidity of shell per unit width

Longitudinal velocity shape factor; perturbation from H

Integration constant

Lateral velocity shape factor

Integration constant; Green's function

Film thickness

Separating streamline level at co

Water level at co

Film thickness where f = 0

Level of reference-tire shape (Fig. 5.6. l; Fig. 3.1. l)

Dimensionless film thickr, ess = h/r
O

Dimensionless film thickness where f = 0

Dimensionless level of reference = ho/r °

Dimensionless water level at _o

Dimensionless height of separating streamline at _o

Dimensionless spring constant D/_ (Pt- Pa ) ro2]

Dimensionless spring constant T/[ (Pt- Pa ) ro]

Dimensionless spring constant kro/(Pt - lba)

Radial spring constant

Load parameter = Load/[width. (Pt- Pa ) ro]

Root of characteristic equation
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M x

M

P

Moment per unit width

Moment parameter = Moment / [ width •

Reaction force at end of footprint

2

(Pt-Pa )" ro ]

P Pressure under tire

Pt

Pa

Q

Inflation pres sure

Atmos pheric pres sure

Shear force per unit width

r
o

R

Tire radius

Local radius of curvature

T Tension per unit width

U

/%
U

x-velocity component

Dimensionless x-velocity = u/U

U Tire velocity

V

W

y-velocity component

z-velocity component; radial deflection

W
O

W

W
O

X

X

Y

Tire deflection from reference state due to inflation

Load

Pt- Pa

Flexibility parameter k r
o

Longitudinal coordinate

x
Dimensionless longitudinal coordinate

r
Vertical coordinate o

Z

Z

Lateral coordinate

z
Dimensionless lateral coordinate

r
o

B

6

Angle of jet (Fig. 3.1.2)

Thickness of jet (Fig. 3.1. 1); Deflection due to static

loading (Fig. 5.6.2)

Dimensionless thickness of jet = 6/r ° ;

Dimensionless deflection due to static loading
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0

X

I/'

0

¢

6;/U

Viscosity parameter = (Pt- Pa ) ro

Slope of free surface

Normalized radius of curvature r /R
O

Viscosity (p_ Pa )

Normalized pressure = (p' Pa )
i

t
Density of water

= y/h

Dummy variable

Subscripts

a

c

e

i

co

t

Atmospheric

Centerline

Exit

Inlet

Undisturbed water

Tire
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1. 0 INTRODUCTION

1. 1 Motivation

The braking capability of aircraft and other vehicles traveling on

pneumatic tires has been known to be impaired by wet runway conditions.

The phenomenon of tire skidding due to the formation of a liquid film under

the tire has been termed hydroplaning.

I. 2 Experiment Versus Theory

Important experimental work has been done on the problem by various

researchers in this country and abroad. As a result of these efforts, some

practical solutions to the problem have been proposed.

Efforts to develop a theory and to explain the underlying physical

effects have, however, been quite limited. One reason for this is probably the

very complex mathematical and physical nature of the problem. The purpose of

the present work has been to attempt to bridge some of these gaps by developing

a more adequate theory. The hope is that improved understanding of the mechanism

of the phenomenon will help indicate the direction of improvement in the design

of tires and roads.

I. 3 Three Regions

In order to speak about the problem in more concrete terms, it may

be helpful to picture three basic regions under the tire: inlet, central and

exit regions (Fig. 1. 3. 1 ). The regimes of flow differ in these regions.
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r
o

h
O0

Fig. 1.3.1

Region

Central Inlet

Reg 1o n Reg ion

Schematic View of Problem Under Consideration

The degree of complexity of this problem may be realized by

considering the following features.

a. Inertia effects are dominant in the inlet region.

b. Viscous effects are important in the central region.

c. Both the inlet and exit positions are not known apriori.

d. The flexibility of the tire plays an important role in the

phenomenon.

e. A substantial fraction of the water encountered by the tire

is deflected sideways.

f. Additional features such as grooving, runway roughness, cavitation,

and turbulence affect the problem.
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The view has been taken at the beginning of the present work that

the most promising avenue was to solve each region separately, thus taking

advantage of whatever simplification its special character allowed. The

separate solutions, however, have to be matched at their end points.

1. 4 Method of Presentation

At first, it may seem logical to discuss the inlet, central, and

exit regions - in this order. However, the fact is that the problem

revolves around the central region to which the inlet and exit regions supply

starting and end conditions. We shall start, therefore, with discussing

the fluid mechanics of the central region, followed by discussions of the

inlet and exit. Subsequently, we shall study the problem of tire elasticity

and, finally, describe solutions to various models.

Several combinations of simplified models which are applicable, in

varying degrees, to the problem at hand can be formulated. Our efforts

were directed toward solving a number of these models. Solutions of some of

the models have not been completed and need further work. Where deemed

useful for future reference, these incomplete results are, nevertheless, presented

in this report.
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2. 0 THE CENTRAL REGION

2.1 Derivation of an Integral Form of Navier-Stokes Equation and its

Simplification

In this section the basic equations which are proposed and used in

this work for studying the central region are derived. Starting with the

Navier-Stokes equation in three dimensions, the derivation is based on

the following assumptions and restrictions:

a.

b.

C.

do

e.

The pressure is uniform transverse to the film (vertically).

The longitudinal and lateral velocity gradients are small

compared to the transverse ones.

The velocity profiles across the gap are assumed to be

parabolic.

The clearance does not vary laterally.

The tire slides without rotation.

It is important to realize that these equations take into account both

viscous and inertia effects. Furthermore, the equations take into account

three dimensional flow. Due to the approximation made for the flow in the

vertical direction, the model will be termed, however, quasi three-dimensional.

The justification of assumptions (a) and (b) lies in the fact that the gap is

small. Assumption (c) is a first approximation, which could eventually be

improved by higher order polynominals. In section 2. 4 we diverge from this

assumption. The restrictions (d) and (e) can be easily removed by generalizing

the derivation. We have chosen to impose these restrictions on the derivation

since it was clear at the outset that a great deal of work was needed before these

equations could be implemented in greater generality. For example, the

RR 67-24 5
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implementation of a laterally variable gap model hinges upon the use of

three-dimensional tire models. Similarly, the consideration of the flow

under a rotating tire requires corresponding elastic terms to be included.

With these approximations, the Navier-Stokes and the continuity

equations in integral form may be written as follows:

o o

(2.i.I)

(2.i.2)

O

(2.1.3)

Assuming that the velocity profile is parabolic (Figs. 2. 1. 1 and 2. 1. 2),

TJ
(u = 0 at y= O; u = U at y= h)

(2. I. 4)

I/

(w= 0 at y= 0 and at y= h) (2.1. s)

RR 67-24 6
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where _ = y/h(x), g = g(x, z), and f = f(x, z) are functions to be determined.

The above integrals have the values

I

- __ + (2. 1.6)
O

(2. 1.7)

!

(2. 1. 10)

I,,) (2. 1. 1i)

(2.1.12)

RR 67-24 7
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Substitution and simplification with the aim of obtaining expressions for

give s

(2. i. 14)

(2.i.ss)

We shall use the tire pressure as a parameter in nondimensionalizing

the equations in view of future coupling of the fluid flow with the elasticity.

The following dimensionless variables are introduced:

(2. _. _6)

_=
(2. 1. 17)

RR 67-24
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1

1.

U

0.( 1.0

Fig. 2. 1. 1 The Longitudinal Velocity Profile

W

U

0.5 --

0.25 -

g=2

I I

0 0.2 0.6 1.0

Fig. 2. 1. 2 The Lateral Velocity Profile
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olX-- (2. 1. 18)

G (2. 1.19)

(2. 1. 20)

and the dimensionless parameters used are:

Viscosity parameter (2. 1.21)

C __ Inertia parameter (2. l. 22)

Width parameter (2. 1.23)

The formulation in terms of dimensionless variables becomes

(2. 1.24),

(2.1.25)

RR 67-24 10
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(2. 1.26)

These equations form the basis for our treatment of the fluid

mechanics in the central region. The y-coordinate has been eliminated

from the equations through integration. It becomes clear now why we

refer to these equations as only quasi three-dimensional.

2.2

derived.

neglected (i. e.,

Quasi Two-Dimensional Form of the Equations

In this section a particular form of Eqs. (2. 1. 13) to (2. 1. 15) is

In the particular case that variations in the z-direction are

no side flow), the equations become:

f u" l¢"

(2. 2. 2)

or

(2. 2. 3)

RR 67-24 11
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(2.2. 4)

The continuity equation may be integrated once to give

= 3-- -5
(2. 2.5)

where H* is an integration constant which gives the value of H when f = 0,

i. e., when the velocity profile is linear (Fig. 2. 1. 1). Combining, we find

(2. 2. 6)

The first term on the right-hand side is the viscous contribution. (Thus, when

C = 0, the equation becomes the Reynolds equation of lubrication. ) The

second term on the right-hand side is the inertia term. Note that the sign of

this term depends not only on the convergence or divergence of the passage

(sign of dH/dX), but also on the sign of the parenthesized term (see Fig. 2. 2. 1).

2.3 Quasi Two-Dimensional Form of the Equations with Side Flow

Estimate

As an intermediate step between the quasi two-dimensional model,

which neglects any side flow, and the quasi three dimensional case, it is

worthwhile considering a model where the flow is basically longitudinal,

but a correction term involving an estimate of the side flow is used.

RR 67-24 12
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Let the side flow estimate be made on the basis of the following

assumptions: First, the lateral inertia terms are neglected; and secondly,

the lateral pressure distribution is assumed to be parabolic. Thus,

where the subscripts a, t, and c denote atmospheric, tire, and centerline

respectively. With these assumptions, Eqs. (2. 1. 13) to (2. 1. 15) become,

respective ly,

0.35

0.30

0.25

0.20

0.15 d__n_
dx

0.!0

0.05

0.0

-0.05 --

-0. i0 --- --

-0. 15

-0 20

dH
-- > 0
dX

d H dH- 0 _-<0
dX dX

\

,

t

i

H/H.

Fig. 2. 2. 1 Graphical Description of Eq. 2. 2. 6
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i- (2. 3. 2)

Lcrc ,),-.J

or alternatively, (_-_")i'°

(2.3. 3)

(2. 3. 4)

(2. 3. 5)

(2. 3. 6)

(2. 3. 7)

2.4 Quasi Two Dimensional Non-Viscous Flow Formulation

The approach in this section is for special conditions different from

the rest of the report. At a very high speed and small load, hydroplaning with

large gaps may occur. In this event the viscous forces are small, and the

velocity profile may be nearly flat. Under these circumstances the following

equations may have validity in the central region:

RR 67-24 14
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U.- _ ---- _'-_% (Continuity) (2. 4. l)

I • _ I _z _ (Bernoulli) (2. 4. 2)__f _- _ -_

Here _ t_ is the level (at 0_) of the streamline separating the

through flow which passes under the tire and the flow which is diverted.

In dimensionless form

C _"T_'----I (2.4.4)

RR 67-24 15
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3. 0 THE INLET REGION

3.1 General Discussion and Prior Work

In the inlet flow pattern, the oncoming stream of water breaks

into side flow, through flow and an upwards jet which may break into a

s pray.

If, to a first approximation, side flow and viscosity are neglected,

the inlet flow model becomes that of a two-dimensional potential flow. Under

these restrictions, the problems of an object gliding on the surface of a fluid

of finite depth was analyzed by Green [ 1 ] in the 1930's for the special case

of a flat plate (Fig. 3. 1. 1). This problem was further discussed by Gurevich

[ 2] and Sedov [ 3]. The method of attack wastheclassical one of mapping the

physical plane conformally onto the hodograph plane, a method particularly

well suited for flows bounded by a combination of free surfaces and straight walls.

Martin [ 4] has obtained solutions for a number of special curved shaped

(Fig. 3. 1. 2) by essentially analogous techniques with added degree of complexity

due to the tire curvature.

We have studied Martin's work with the following objectives in mind:

(1)

(2)

Coupling Martin's solutions with our treatment of the central

region.

Using Martin's work as a subroutine of an iterative procedure

taking in account the flexibility in the following way: given a

tire shape, find the pressure distribution then use the elastic

model to find a more accurate tire shape.

RR 67-24 17
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After studying Martin's paper, we decided not to use his work at

that stage, due to the following arguments. The complexity of these solu-

tions is such that the deduction of additional necessary features for an al-

ready available solution, e. g., the location of the stagnation point or the

average pressure on a vertical plane through the stagnation point are

laborious to obtain. Furthermore, this technique is not applicable directly to

an arbitrary rigid tire shape but rather to special shapes only. Thus, in order to

study the effect of tire flexibility by iteration, one has to use more elaborate

means. For an arbitrary shape, the sought for mapping function is characterized

by nonlinear integral side conditions. Some of the methods for setting such

integral equations are discussed by Birkhoff and Zarantonello [ 5] and by

Gurevich [ 2]. Finally, the use of conformal mapping is limited to two

dimensions. Thus the theory cannot be readily extended into three dimensions.

3.2 An Approximate Inlet Condition

Due to the complexity of Martin's technique and its limited applicability

to coupling with the central region solution, we searched for simpler and more

readily applicable techniques, even at some sacrifice in accuracy.

In the central region of the tire, viscous effects are important and

parabolic velocity profile is assumed as explained in Chapter 2.0. Thus, it

becomes the function of the inlet region, to accommodate the uniform velocity

profile prevailing upstream to the parabolic velocity profile prevailing in the

central region. During this process of accommodation the inflow is diverted

in part inot an upward jet and in part to side flow. Let the side flow in the

inlet region be neglected to a first approximation. On this basis we shall

derive in the following, using continuity and momentum balances on the

control volume shown in Fig. 3. 1. 2, an accommodation condition. This

relation can be used as an approximate initial condition for the central region.

The continuity and momentum equations become:

18
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q_

X

h = -tg B" .x . /

h
0

Fig 3. 1. 1 Green's Problem - A Flat Plate Gliding over a Fluid

of Finite Depth

Control Volume 6

Fig 3. 1. 2 A Curved Plate Gliding over a Fluid of Finite Depth
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_) 4:=

0

+ fv -

0

(3.2. i)

(3. 2. 2)

Using Eqs. (2. 1. 6) and (2. 1.7), this becomes:

(3.2.3)

(3.2.4)

For the evaluation of 6 a mass balance between the reversed flow

and the jet is made (See Fig. 2. i. 1 for f < -I. )

where

2i,, f
(Point of zero u) (3. 2. 6)

RR 67-24 20
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(3.2.7)

where is the dimensionless jet thickness.

Hence we find

(3.2.8)

(3.2.9)

These two relations constitute initial conditions for the treatment of the

central region. In order to facilitate their application, the relations are

presented in graphical form in Figs. 3. 2. 1 and 3. 2. 2.

3.3 Comparison with Other Theories

In order to gain confidence in the initial conditions proposed in

Section 3. 2, a comparison with Green's solution [ 1] will be made here.

Green solved the problem of a flat plate at angle of incidence _ gliding

over a fluid of finite depth (Fig 3. 1. 1).

RR 67-24 21
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Since Creen considers non-viscous flow, it will be fair to assume F = 0 in

Eq. (2.3.3) for the sake of comparison. Thus, we have *

(3.3. 1)

(3.3. 2)

(3.3. 3)

Differentiating, we find

(3.3. 4)

(3.3.5)

Using the boundary condition that the end of the plate is at H = H ando

=0, we find

*h, h (Fig. 3. 1. 1), x are non-dimensionalized with respect to someo

characteristic length
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_'C "i _o

(3.3.6)

_ - /4<
2.c u0" - E,

(3. 3.7)

In order to find the flow parameters we need a simultaneous solution of

Eqs. (3. 2. 8), (3.2.9), (3.3. 2) and (3. 3.7). For Hi, Tri, fi' H*. In Fig.

3.3. 1, the simultaneous solution of Eqs. (3. 3.7) and (3. 2. 9) is shown.

As explained before, this solution is motivated by the desire to compare

the approximate conditions derived here to the available solution given by

Green (Ref. [ 1], Fig. 8) who presents a chart which in our notation becomes:

/4o versus ---- C

In Fig. 3. 3. 2 and 3. 3. 3 these variables are found as a function of

f.. Fig. 3. 3. 4 has been taken from Ref [ 1] and our results are superimposed.
i

Our results become inaccurate for large values of Ho/H _. Consequently, we have

not made the comparison for small angles /9 since the region of validity of our

data is beyond the scale of Green's graphs.

our results compare well with those of Green.

advantage that it is mathematically simple,

effects, Is relatively easily coupled with the central region

can hopefully be generalized to three dimensions.

In most of the range of interest,

Our technique has, however, the

can accommodate viscous

solutions, and
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4. 0 THE EXIT REGION

In order to solve the equations for the central region, conditions are

needed not only for the inlet, but also for the exit. The question as to what

exit conditions are applicable is not peculiar to the present work. This

question arises in many lubrication problems and it is indeed difficult to

answer it rigorously.

It has been a common practice in lubrication studies to assume that

the film terminates where dPdx = 0 and p = Pa" This is the swift-Stieber

condition [ 6]. Another commonly used condition is to terminate the film at

the point of incipient counterflow and p = Pa" This is the Birkhoff-Hays

•condition [ 7]. Both conditions have no rigorous rationalization. In heavily

loaded bearings the choice of condition turns out not to affect significantly

the prediction of load capacity, in a more rigorous investigation, Coyne and

Elrod [ 8] derived exit pressure and exit pressure gradient conditions. Un-

fortunately, their investigation is limited to low Reynolds number. What is

really needed here is to extend Coyne-Elrod's work into the higher Reynolds

number range. From preliminary consideration we have concluded, however, that

such an extension is a problem which requires a special program of study. In

order not to embark on work beyond the scope of the present project, we have

tentatively applied the Birkhoff-Hays exit condition to our solutions.
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5. 0 TIRE FLEXIBILITY

5. 1 Introduction

A most important aspect of hydroplaning is the effect of tire

flexibility. Perhaps the most striking example of the importance of flexi-

bility is the NASA formula [ 9] which asserts that the speed of incipient

hydroplaning is proportional to the square root of the tire pressure. Thus, the

greater the flexibility, the higher is the hydroplaning danger. Secondly,

films on hydroplaning [ 10] reveal inward bulging of the tire in its footprint

area. This cannot occur if flexibility is neglected. As a final example,

it has been noted by Gross, Stahler and Wildmann [ ll] that the pressure

distribution in foil bearings [ 12] * whose essential characteristic is high

flexibility, is remarkably similar to that measured under tires (see Fig. 5. I. l).

A number of tire structural muu_.-_-'sare studied in this chapter. We

start in Section 5. 2 with a brief review of some of the literature on the subject.

Following this, we summarize in Section 5. 3 some of the common aspects of

many models. In Sections 5. 4 through 5. 8, we present detailed analyses of

each of the models we considered. These models are arranged, with one

exception, in increasing order of complexity. Accordingly, Section 5. 8 should

have preceded Section 5.7. We diverted from this order since the basic

equations of Section 5. 8 can be deduced directly from those of Section 5.7

by putting D = 0.

*The foil bearing concept is described in more detail in Section 5. 5.
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Flexible, Self-Acting Foil Bearing (adapted from
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5.2

and simple.

i.

Literature on Tire Elastic Models

There exists no elastic model of tires which is both satisfactory

The main complicating factors are:

The geometry of the tire which constitutes a pre-stressed

toroidal shell of non-circular cross section.

2. Tire materials are non-linear and exhibit viscoeleastic

behavior.

3. Due to the structural reinforcement the elastic properties

of the composite tire material are non-isotropic.

Some of the analytical studies of the elastic structure of tires are

outlined below. Ames and Lauterbach [13, 143 applied the theories of

Adkins, Rivlin and Hofferberth [ 15 through 20] to formulate a membrane

model in which the load was considered to be supported by the network of

cords with a negligible contribution of the rubber. A further development [ 21],

which takes in account the laminated structure shows how to calculate the

•deformations due to an axisymmetric load. Another approach was taken by Clark

[ 22 ], _vho considered the tire as an elastically supported cylindrical shell.

Bergman [ 23 ] was interested in cornering forces. He considered the

tire as composed of a large number of rings, each sliced by two neighboring

planes intersecting on the axis of rotation. These rings were considered as lateral

springs. More involved models were used by Saito [ 24 1, Lippmann [ 25 ] and

others who treated the tread region as a beam supported on the sidewalls which

were considered as an elastic foundation.

5.3 General Remarks about Treatment of Flexibility

In principle, one can find the pressure distribution for a given tire

shape from considerations of fluid mechanics. The equations involved in

this were discussed in Chapters 2.0 to 4. 0. Any structural tire model

relates a local load distribution through elastic and geometric conditions

to a clearance distribution. The present chapter is devoted to this problem.
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One general method of simultaneously evaluating the pressure

and the clearance distribution is solving each of these problems separately

and iterating. The other alternative is couplfngthe equations by eliminating

the pressure. The iterative approach is available for use with any tire model.

It involves usually convergence problems which have to be overcome. The

coupling approach produces for all but the simplest tire models high-order

differential equations. The solution of high order boundary value problems

is usually difficult due to the growth of spurious solutions in the integration

process.

Another one of the problems encountered in this work was the

evaluation of tire elastic parameters. The approach used to resolve this

problem was to deduce ioad-deflectlon-footprint curves for the theoretical

models and to fit them to experimental data*. This task has been accomplished

for the spring and membrane models. It has not been completed yet for the

shell model although the formulae are all presented in Section 5.7.

later.

It is convenient to define load and moment parameters to be used

c/,, r°'- (f,-f') x,

*The experimental data used in this chapter has been provided by the

Goodyear Tire and Rubber Company.

RR 67-24 32



AMPEX

Here x. and x denote, respectively, the inlet and exit points or the
1 e

attachment and detachment points of the film.

Whether in loading against a dry flat plate or on a fluid film,

changes of some degree of abruptness in the loading occur at some points.

It is therefore important to investigate the conditions of continuity in H and

its derivatives. These conditions will be derived in the following sections

separately for each model.

5. 4 Rigid Tire

When the technique of iteration is used to account for the flexibility

effects it will be found necessary to assume an initial rigid tire shape. A

circular shape is probably the most natural first approximation. Since the

region of interest is the footprint, the approximation of

(5. 4. 1)

has been utilized in this work. Accordingly, a circular tire of radius of

curvature R =r will give in the region of interest a gap distribution of
O'

,,,1I"_ (5. 4. 2)

If one chooses the origin as the intersection point between the axis of

symmetry of the tire and the ground, this relation becomes

(5. 4. 3)
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where h is the height of the minimum point of the tire contour.
O

less form:

In dimens ion-

L

2- (5. 4. 4)

5. 5 Foil Bearing Model

The term "foil bearing" was coined in 1953 by Blok and Van Rossum [ 26]

in reference to a bearing surface made of a flexible foil stretched between

distant supports. Interest at Ampex in foil bearings stems from the fact that the

configuration of a tape gransported over guiding spindles or magnetic recording

heads is a foil bearing. As the flexible tape passes over the spindle it entrains

an air film. This is similar to the water film formed between the compliant tire

surface and the road. In some applications, interest is to promote air lubrication

while in other instances the requirement is to destroy the film. The latter case

is analogous to the tire problem.

Mathematically, the planar foil bearing used as a tire model involves

the simultaneous solution of a flow equation and the elasticity relation

7- (5. 5. i)

with the proper boundary conditions. Here p, Pt' R, T denote the local and

the tire pressures, radius of curvature and tension respectively. The clearance

h and the local radius of curvature R are related through geometry (Eq. 5. 4. 1).

The tension T may be estimated as
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(s.s.2)

In dimensionless form Eq. (5. 5. 1) becomes

(s.s.3)

The pressure distribution in foil bearings and tires is remarkably

similar (Fig. 5. 1. 1). Nevertheless, the problems are significantly different

in the following respects:

1. The flow model in the classical foil bearing solutions is

based on the Reynolds Equation and involves no inertia

effects. These effects are important in the tire case and

particularly in the inlet.

2. The elastic structure of the tire is much more complex than

that of a perfectly flexible tape.

3. The most significant difference in character between tires and

foils lies, however, in the fact that foil bearings do not trans-

mit hub loads while tires are loaded through the hub.

Only in the event that a section of a tire transmits little hub load, can it

be expected that a simulation by means of a foil will have some measure of

success. The center plane of a wide tire fulfills to a limited extent this

condition. This plan is far from the side walls of the tire. If one neglects

the loads transmitted by lateral tension and by the radial shear, this plane is

affected by a force balance resembling that of a foil bearing (Fig. 5.5. 1).
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Section of Circumferential Wall

Which Resembles a Foil

Bearing

Z-Tension on Membrane

/ Relatively Stiff Side Wall

t/
Hub

I

I
i

P

Fig. 5. 5. 1 The Foil Bearing as a Tire Model

5. 6 Spring Model

The foil bearing has a basic deficiency as a tire model in that

it cannot transmit hub loads. The simplest model which does not exhibit

this difficulty is composed of a continuous distribution of radial springs.

These springs can be thought of as simulating both the stiffness of the

side walls and the hoop stiffness of the circumference. If the springs are

assumed to be independent circumferentially but tied laterally (planar deflection),

the equations describing pressure deflection relation is

RR 67-24
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Here k is the spring constant in units of pressure change per unit deflection.

The local delfection measured outward from the stress free state is denoted

by w. The dimensionless deflection is _/= _..r/ro

In dimensionless form Eq. (5. 6. 1)becomes

where

hfo= (5. 6. 3)

/_._

W may be interpreted as a dimensionless deflection due to inflation. The
o

reciprocal KW = 1/W may be interpreted as a dimensionless spring constant.O

In addition to this elastic equation, a geometric condition relating

the deflection w to the clearance h is needed. Figure 5. 6. 1 defines the

quantities 8, ho, x. VChen the angle e is small, this geometric relation

may be approximated by

X 2"

A + _ - /,._- _ (s.6.4)

or

/-/.v- (4/ = _o "_ 'A/_ (5. 6. 5)
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The spring model as an approximation to a real tire in the sense of

Fig. (5. 5. 1) applies particularly to the region close to the side walls.

Continuity Conditions

It is clear from Eq. (5. 6. 1) that a discontinuous pressure distri-

bution will cause discontinuous tire contour and point forces cannot be

accommodated at all.

Static Load on Dry Surface

The load deflection-footprint relation will be derived here for

the purpose of fitting the stiffness parameters by comparison to experimental

data. Denote the inward deflection (measured from the inflated tire shape)

that the tire undergoes due to loading against a flat plate, by 6. Thus,

it is seen from Fig. 5. 6. 2 that

(5. 6. 6)

- - = - o---_ - Ao (s.6.7)
Kw

so that

At the end of the footprint X :
e

e

W = W .
e o
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Load and no Pressure
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Loaded Tire

Fig. 5. 6. 1 Notation for the Tire Spring Model

S

8

Fig. 5.6. 2 Notation for Static Loading
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Furthermore, at the end of the footprint

H = 0
e

It follows from Eq. (5. 6. 5) that

(5.6.8)

The pressure distribution in the footprint follows from Eqs. (5. 6. 2) and

(5. 6. 5).

The load parameter is

(5. 6. 10)

or

L = /. _1 K,,v z__/_ = :z_ K_ x'_s (5.6.i i)
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On the basis of these formulae, curve-fitting to the Goodyear data has been

made and the results are shown in Fig. 5. 6. 3.

5.7 Elastically supported Laterally Rigid Shell (Tire Shell Model)

Let us consider a planar model consisting of a cylindrical shell

supported on continuous radial springs (playing the role of the side walls)

and press_ized to a pressure Pt" This is similar to the model considered

by Clark [ 22].

The force and moment balances on an element as well as the stress

strain relations become (Fig. 5.7. 1)

(5. 7. 2)

(s. 7.3)

where k is the spring constant (pressure change per unit deflection), T the

tension per unit width and D the flexural rigidity per unit width, w is the

outward deflection measured from the zero spring-strain position. In deriving

these equations it was assumed that the surface under consideration is flat

enough that

/ "_ i.e., - __--'-:
R gz_--

RR 67-24
41



AMPEX

Fig.

X:O. 5
e

0.0

5.6.3

0.i0

A

0.05

s

o S
s

s

fs

0.0

KW-2.18

/i

.,,°

i _5f>r[nq

I
I

Z4 "t ps_

KT = O. 243

Model

Me mbranc, Model

f::<perimental

i L
i I

1. O

Experimental and Theoretical Load-Deflection Curves

(The experimental curves, courtesy of Goodyear Tire and

Rubber Company - 8. 25 x 14 Power Cushion)

KW= 15.2

KT := 0. 24_ _"
s S

- _ - f_'

/://
/f

n 0.5

2aps, ///" _;' /
IX Y/,,fi . /

,.L

18

Sprincj Model

Membrane viodel

Experimental

i
i

L.O

L

Fig. 5.6.4

RR 67-24

Experimental and Theoretical Load-Footprint Curves

(The experimental curve, courtesy of Goodyear Tire and

Rubber Company - 8. 25 x 14 Power Cushion)
42



AMPEX

and that the tangential load as well as the circumferential tension variations

are neglibtble. Thus:

(s. 7.4)

(5. 7. 5)

or

(s. 7.6)

/

kw/i

Q +dQ//

T + dT "_ .il

T

M_

X

Fig. 5. 7. 1 Notation for the Tire-Shell and Membrane Models
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A prescribed h
o

the load.

determines the position of the tire center and thus determines

The tension T is assumed in this treatment to be uniform around the

tire for a given tire pressure regardless of the hub load. Thus, for a

given inflation pressure, the tension may be regarded as a prescribed

elastic constant. In dimensionless form, Eq. (5. 7. 6) becomes:

(5. 7. 7)

where

(5. 7. 8)

]-'r.

K'W_- ______--

(S. 7. 9)

(5.7. 10)

Deflection Due to Inflation

Let us assume that due to inflation the tire deflects from the

unstrained spring state an amount w. Thus the tension T can be found in

terms ofw from Eq. 5. 7. 4
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T-
(s.7.1i)

In the spring model, KT = 0. There we found that Wo = 1/K"v_F

Continuity Conditions

It is important, as explained before, to determine up to what order

of differentiation, continuity of the derivatives of H is maintained in face of

discontinuities in load.

From Eq. (5. 7. 2) it is clearthat the moment M must be continuous
X

if we exclude infinite point loads. Therefore, it is seen from Eq. (5.7.3)

that H" must also be continuous.

which

gives

Let us consider now an interval of width 26 around a point X on

we fix our attention. Integration of Eq. (5.7.7) across this interval

H/,r t,,. i,_),_ = H [x+_)- H - = (5. 7. 13)

X_

GJ
_(._

45
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The first integral on the right hand side vanishes when _ -"0. It is

concluded, therefore, that a jump in H'" occurs whenever a point force is

applied, i.e. , when the second integral remains finite as E-" 0. A

finite discontinuity in pressure may cause, however, a discontinuity

in the H Iv but not in H"'

Static Load on Dry Surface

We will continue to use here the notation of Fig. 5.6.2.

(5. 7. 14)

or in dimensionless form

---_A]o -- 14o = - -- _o (5.7. 15)

<w

The solution of Eq. (5. 7.7) for the region which is not in contact

(_ = 0) is

(5.7. 16)

where

RR 67-24
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are the solutions of the characteristic equation of the homogeneous part

of Eq. (5. 7.7). In the footprint area the solution is

/-/-_O (s. 7.17)

and hence the pressure distribution becomes

This, however, is not the complete solution since it will be shown soon

that supplementary point forces are applied at the edges of the footprink The

solution for X > X _ 0 where X is one end of the footprint, involvese e

four integration constants. Two of these constants, A, B must vanish in order

that H will not blow up exponentially as X -_ o_ The remaining two constants

must be determined by the continuity conditions at X .
e

It is now seen that unless one assumes that an upward point force

P is applied at Xe, four continuity requirements are imposed with only two

degrees of freedom F, G left for evaluation. We thus come up with the con-

clusion that at X a finite jump in the third derivative occurs. The continuitye

requirements are:

/4=0 - A-'-_ .+_ _ _ "%_ (5.7.19)
2-

(s.7.20)
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H I, __ - _,,,'<e _.=0 = _ Fe 4-_. (s. 7.2 l)

_/4'"- Pr"_- _F_ -_'%"
_D

(5. 7. 22)

With X prescribed, Eqs.
e

evaluate the unknown F, G, _ P:

(5.7. 19) to (5.7. 20) can be used to

_- _,_(,,,,_>,.,,.)e
(5. 7. 23)*

,>,,(>,,=-,,,,j
(5. 7. 24)

-,-0",-+ t2 (5.7. 25)

"_/rZ"

/P
(5.7. 26)

*It will be shown later that Eqs.
1

only for _ >
m I m 2

(5. 7.23 to 5.7.27) are applicable
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The load can be evaluated at the point by means of Eq.

0

(5.2.is).

(5. 2. 27)

At this point it is natural to inquire what happens to ,% when X -" 0. At
e

a first thought, one is tempted to say that ,% should approach zero. Eq.

(5. 7. 25) reveals at once that this is not the case. The reason for this

behavior lies in the fact that Eqs. (5. 7. 19) through (5.7. 21) stem from the

applicability of Eq. (5.7. 17) in the footprint. When X -_ 0, the footprint
e

vanishes and while Eq. (5.7. 20) is still right by virtue of symmetry, Eq.

(5. 7. 21) does not apply. In fact the ground reaction is a point force and

the curvature at the single point of contact is somewhere between zero and

1/r ° depending on the load. We have found, therefore, that this model

exhibits two types of behavior as one increases the load from zero*. For

small but finite loads, the tire ground contact is at a single point (Xe= 0)

where a point reaction force acts. As the load increases from zero to

some threshold value, the radius of curvature at the contact point increases

from r to " and the footprint forms. Further increase in load will increaseo

X from zero and generate a ground pressure along the footprint in addition toe

point forces at its ends.

In the low load range the equivalent to Eqs. (5. 6. 19) to (5.7. 22) is

*It should be noted that this is the behavior of our model and not necessarily

of real tires. At the point of application of a point force an unrealizable infinite

pressure occurs. In reality a distribution of pressure and local surface defor-

mations exist. Local deformations of this nature are neglected in our model

and in thin shell theory in general. The overall effects are nevertheless correct,

by virtue of St. Venant's principle.

RR 67-24 49



AMPEX

/4--o = /=-÷ _ -- ,_ (5.7.28)

I

/-/=o : -%F - m, (5.7.29)

(5.7.30)

_ro_ _ _ ,_¢_L_H"-----=-_F
Z_

(5.7.31)

These equations are applicable for a given 6 in the range

(5.7.32)

for solving F, G, P, ×

The solution is

(5.7.33)

6"= (5.7.34)

(5.7.35)

(5.7.36)
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is:

Load/width = 2P = D
rnlm 2 + A (5.7. 37)

(ml m 2)

The purpose of the derivation of these load-deflection-footprint

relations was to make it possible to evaluate the coefficients KD, KT, KW

from experimental data. This task has not been completed.

General Solution of Eq. (5.7.7) for a Prescribed Pressure Distribution

The purpose of the following derivation is to find an expression

or an algorithm for the evaluation of H once _ is known. This will be useful

as a part of an iterative-coupling of the fluid flow to the tire shell model.

Substituting the expression

(5.7. 38)

in Eq. (5.7.7), the equation becomes:

(5. 7. 39)
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where we require f -'0, forx-'±

Let us find the Green's function G(x, _) for the problem. This

function is defined by the differential equation

(5.7. 40)

and the following boundary and continuity conditions:

At

9

//

)

are continuous and

(5.7. 41)

'7.* - d - / (5. 7. 42)

The function G is found to be as follows

4'-
-m _X_,

(5.7 43)

_x,_)_--
2._ >.,,(,.,,.-<)

..+
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Accordingly,

_0o

(5.7. 44)

or since ("0 -_-o for x-" L×

When _(X) is found from fluid mechanical considerations, H(X) can, in

principle, be evaluated from Eq. (5.7. 45).

5. 8 Elastically Supported, Laterally Rigid Membrane (Tire - Membrane

Model)

The model discussed in this section is simpler than the tire-

shell model. It follows the tire-shell model in the sequence of presentation

merely due to the fact that by putting D=0 in Eq.(5.7.6) the basic

equations is found.

This model can be visualized as a cylindrical shell with infinite

lateral bending stiffness and perfect flexibility in the longitudinal direction.

This shell is elastically supported in the radial direction. This is in a way a

combination of the foil bearing model and the spring model. The basic

equation is:
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(s.8.I)

or in dimensionless form

(5.8.2)

where aga in

7-
f

(5. 8. 3)

/_ = _ (5.8.4)

Continuity Conditions

The motivation for deriving these conditions has been given before

and will not be repeated here. From Eq. (5. 8. 2) it is clear that a pressure

jump along the periphery of the tire requires H" to be discontinuous.

Integrating this equation across a jump of width 2 ( where ( -" 0 shows that

(5.8.5)
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Hence, if H is continuous, ZIH vanishes unless is finite.

only if a point force is applied, a discontinuity in H' will exist.

i.e.,

Boundary Conditions

The boundary condition for H' at the inlet and the exit points in

the case of fluid flow under the tire may be established by solving Eq. 5. 8. 2 for

the case of • ,, 0. This condition exists in the regions

The general solution is

_ _ XK" _-_ X y z Kr_ l

/¢-/e _Be +//o+_. + _ (5.8.6)

For the exit region B = O, hence

q-X
(5.8.7)

Hi-- - H"- E "- _j+G
(s.8.8)

For the inlet:

/<;,--/ -/- x';, (s. 8. 9)
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Static Load on Dry Surface

face.

too.

Consider now the problem of a tire statically loaded on a dry sur-

The expression (5.7. 15) for the static deflection A applies here

In the footprint area

/4 _ 0 (5. 8. i O)

Hence, the application of the continuity requirements mentioned above,

at the boundaries at the footprint (i) and (e) gives:

/ /

(5.8. 11)

The size of the footprint is found by substitution of Eq. (5. 8. ll) into

Eq. (5. 8. 8).

v -_z &+2_o+ a_ &-I_o
ale e_

(S. 8. 12)

;<_ -ZHo

(s. 8.13)
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The pressure distribution in the footprint due to dry loading is

found by substituting Eqo (5. 8. 10) into Eq0 (5. 8. 2)

_: ,- _-,(,+o+_"; (s.B.I4)

The load parameter is:

- K,,&o+_9./x_- (s.8.is)

(s.B.i6)

where X is given by Eq. (5. 8. 13).
e

and the expression

The set of equations (5. 8. 13), (5.8. 16)

A= k/o-H, =
Kw

(s. 8. i7)

have been used to evaluate the coefficients KW and KT on the basis of

the Goodyear data (Fig. 5° 6. 3).
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6. 0 FORMULATIONS AND SOLUTIONS

6. i Introduction

In this chapter formulations and solutions for specific models will

be presented. In addition, some of our work which still requires further

efforts for completion, is described.

6.2 Quasi Two Dimensional Flow Model Coupled with a Rigid Circular

Tire*

Equations (See Section 2. 2; 5.4)

(6. 2. i)

(6. 2. 2)

(6. 2.3)

Input Parameters

c, C, H*, H
0

* Note that the prescribed shape was arbitrarily chosen to be circular.

technique applies to any shape.

The
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Boundary Conditions (integration in the negative direction).

At the exit:

"7_ --_ O

j_= -/ (Section 4. 0)

(H e and Xe are found from Eqs. (6. 2. 2) and (6. 2. 3)).

The numerical integration of Eq. (6. 2.1) supplies a relation

between _ and H. The attachment point (_i' Hi) must belong to this family.

At the inlet: Eq. (3. 2. 0) supplies a second relation between ft. and H.
1 1

so that the inlet point is determined.

Output Parameters

H (from Eq. (3. 2. 8)), A (from Eq. 3. 2. 7) and L (from Eq. (5. 3. 1).

This is an inverse solution of the problem.

rate (H*) and the tire center level by specifying H
O

values of the water level (H2, the jet thickness /%,

technique eliminates trial and error.

We prescribe the flow

and find as output the

and the load (L). This

Results

In Fig. 6. 2. 1 to 6. 2. 3 sample pressure distributions are shown. The

effects of speed are demonstrated by varying simultaneously C and 6 in the

following way: C _ U2; 6 -_U. Increase in speed results in higher pressure

level and in a deeper penetration of the inlet region into the footprint area

Secondly, the effect of prescribing the flow rate is studied by specifying H*.

The variations of load and pressure due to small changes in flow rate are

rather strong,
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H*= 0.70x 10 -4

0.68 x 10 -4

0.66 x 10 -4

O. 64 x 10 -4

.02
X

0.070 x i0 -3

0.068 x i0 -3

O. 066 x 10 -3

0.064 x 10 -3

L

0.0451

0.0237

0.0125

0.0069

0.9442 x 10 -3

0.2894 x 10 -3

0.0980 x 10 -3

0.0529 x 10 -3

Fig. 6.2.1

Pressure Distribution in Quasi

Tw°-Dimenstonal Flow Under
Rigid Circular Tire

'Ho = 0.5xi0-4

C = 0.5

= 10-6

0.9092 x 1_

0.2554 x i,

0.0650 x 1

0.0209 x 1

i

0.070 x i0

0.068 x i0 _

0.066 x 10 _

0.064 x I0,
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3-3

3-3

3-3

3-3

-3

-3

-3

-3

X

1.0

0.5

!

.02

-0.5

-4
*= 0.70 x i0

0.68 x 10.4

/\\////// 0.66 x 10.4

i J,\LA/

-.02 -.04 -. 6
X

H*= 0.70 x 10 -4

0.68 x 10 -4

0.66 x 10 -4

0.64 x 10-4

\

H*

-3
0.070 x 10

-3
0.068 x 10

-3
0.066 x 10

-3
0.064 x 10

L

0.0423

0.0281

0.0192

0.0099

Hot)

0.1092 x 10 -3

0.0733 x 10 .3

0.0483 x 10 .3

-3
0.0378 x 10

A

0.0742 x 10 .3

0.0393 x 10 -3

0.0153 x 10 -3

0.0058 x 10 .3

0.0418

0.0244

0.0150

0.0085

H_

-3
0.2748 x 10

-3
0.1110 x 10

-3
0.0890 x i0

-3
0.0445 x i0

A

-3
0.2398 x 10

-3
0.0770 x i0

-3
0.0360 x 10

-3
0.0125 x 10

Fig. 6.2.3

Pressure Distribution in Quasi

Two-Dimensional Flow Under

Rigid Circular Tire

H = 0.5 x 10-4
O

C = 2,0

-6
c = 2xlO

Fig. 6.2.2

Pressure Distribution in Quasi

Two-Dimensional Flow Under

Rigid Circular Tire

H = 0.5 x 10 .4
o

C = 1.0

¢ = _f2-'x lO -6
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6.3 Quasi Two-Dimensional Flow Model with Side Flow Estimate

Coupled with a Rigid Circular Tire*

Equations

(6. 3. 1)

(6. 3. 2)

X ¢ (6. 3.3)*

Input Parameters

C, C, B, Ho, Xe

Boundary Conditions (integration in the negative x-direction)

At the exit:

X= Xa

_e = -I

(H e is found from Eq. (6. 3.3)).

At the inlet: The intersection of the solution of Eq.

Eq. (6. 3. 3) and Eq. (3. 2. 0) provides the inlet condition.

*The technique applies to an arbitrary shape.

(6. 3. 1) through
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Output Parameters

H (from Eq. (3. 2. 8)), _from Eq. (3. 2.7)), L (from Eq. (5. 3. 1)).
QO

In this inverse solution we prescribe the film terminal point (X e)

as well as the tire center level (H o) and we find as output the water level

(H_ the jet thickness A and the load (L). Trial and error is eliminated

in this way.

Results

Sample solutions are given in Figs. 6. 3. 1 through 6. 3. 4. In

each of the figures, a single effect is studied. For each case, three

curves are given: ?r, f and H/H versus X.
e

In the specific case studied in Fig. 6. 3. 1 the effect of reducing

width is unoticeable until b/r is of the order of about 0. 05. For lower values,
o

however, the solution is affected. In fact, for b/r -: 0. 025 the "solution"o

presented in Fig. 6. 3. ] - c does not meet the initial conditions. This is

interpreted to mean that for small enough width no hydroplaning occurs.

This phenomenon could be intuitively expected and here it is calculated

quantitatively for the model considered.

Figure 6. 3. 2 exhibits the effect of changing the gap. Reduced gap

means higher pressure and load. Figure 6. 3. 3 demonstrates the effect of

changing X (the film separation point). The resulting pressure distribution
e

is affected quite strongly by small variations of X .
e

The conclusion, with respect to the effect of speed, is that as

the pressure level increases, the depth of penetration of the inlet point

into the footprint area increases at the same time.
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H e

1 _ /
'. I \

-1.0

\

-2.0 \ -2.0

\,
\

k

i

/h-- /
, / e 1.01 '

/ , .o,

-- -1.0 t

J

\,/

6.3.1-a 6.3.1-b 6.3. l-c

E- = 10 -6 E = 10 -6 e = 10 -6

c = o.5 c = 0.5 c = o.5

B = i/3 B = 1/20 B = 1/40

H = 0.05 x 10 -3 H = 0.05 x 10 -3 H = 0.05 x 10 -3
O O O

X e = 0.01 X e = 0.01 X e = 0.01

L = 0.131 L = 0.0149
Solution does not

H_ = 7.415 x 10 -5 H= = 1.784 x 10 -4 meet inlet conditions.

A = 3.977 x 10 -5 _ = 1.765 x 10 -6

Fig. 6.3.1 Pressure, Shape Factor, and Gap Distribution

in a Quasi Two-Dimensional Flow Model with

Side Flow Estimate Coupled with Rigid Circular

Tire; Effect of Width Parameter B
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1.

.02 _i -.02

6.3.2-b
( = 10 .6

C = 0,5 ( = 10"6

B I/3 C O, 5

H = 0._$ x 10 -3 B = i/3
o

×e = 0.01 H o = 0.05 x 10 "3

L = 0.0013 X = 0.01e

H® = 3,66B x I0 -5 L = 0.0131

A = 3.704 x i0-9 H_ = 7.415x i0-5

"% : 3.977 × 10 -5

Fig 6.3. 2 Pressure, Shape Factor, and Gap Distribution

in a Quasi Two-Dimensional Flow Model with

Side Flow Estimate Coupled with Rigid Circular
Tire; Effect of H

0
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/

H e ' ' H

"I ?\

-1. -1.J J_ , /

X = 0.009
e

L = 0.0012

Hm = 3.017 x 10 -5

= 0.00

6.3.3-b 6.3.3-c

10 -6 ¢ = 10 -6

C = 0.5 C = 0.5

B ]/3 B = 1/3

H 0.05 x 10 -3 H = 0.05 x 10 -3
o o

Xe 0.01 v _
- 0.0105

e

L 0.0131 L : 0.0397

H® 7.415 x 10 -5 H® = 9.435 x 10 -4

A 3.977 x 10 -5 A = 2.498 X 10 .6

Fig. 6.3.3 Pressure, Shape Factor, and Gap Distribution

in a Quasi Two-Dimensional Flow Model

with Side Flow Estimate Coupled with Rigid

Circular Tire; Effect of X
e
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H e

/

- .04

j_
/H__

/ He

o /\
/ ",

I: 'i

r , !

;2 '_/ -.o2
X

-l!0-

f

-2.0-
\

x / i

/ |/!
-1.0' 4-- '

/f

- 2.0 -- "_
\

ii

- l'. O- L!

'/f

-2.0- -

6.3.4-a

( = 0.707 x 10 -6

C = 0.25

B = 1/3

H = 0.05 x 10 .3
o

X e = 0.01

L = 0.0119

H® = 1.408 x 10 .4

A = 9.879 x 10 -5

5.3 .4-b 6.3.4-c 6.3.4-d

C 10 .6 ( = 1.414 x 10 .6 ( 2.0 x 10 -b

C 0.5 C = 1.0 C 2.0

a : I/3 B = I/3 B i/3
H 0.5 H = 0.05 x 10 .3 H 0.05 x 10 .3

o o o

X e = ().(11 X e = 0.01 Xe 0.01

L = 0.0131 L = 0.0147 L = 0.0168

-5 = 4.941 x 10 -5 Hm = 4.063 x 10 -5
Hm = 7.415 x I0 H®

/% = 3.977 x 10 -5 ,% = 1.5_3 x 10 -5 ,% = 7.182 × 10 -6

Fig. 6.3.4 Pressure, Shape Factor, and Gap Distribution

in a Quasi Two-Dimensional Flow Model with

Side Flow Estimate Coupled with Rigid Circular

Tire; Effect of Speed (( -_ U; C N U 2 )
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6.4 Foil Bearing (Quasi Two-Dimensional Flow Coupled with a

Perfectly Flexible Foil Tire Model)

Equations: (See Section 2. 2, 5. 5)

(6. 4. l)

(6. 4. 2)

(6. 4. 3)

Input Parameters

(, C, H*, H'
e

Boundary conditions

At the exit:

- -!

de

(H and H" are found from Eq. (6. 4. 2) and (6. 4. 3)).
e e

The numerical integration of Eqs. (6. 4. 1) and (6. 4.3) gives a

relation between _ and H.
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At the inlet:

At the inlet: Eq. (3. 2. 9) supplies a second relation between _r and H

so that the inlet point is determined.

Output Parameters

H {from Eq.
co

3. 2. 8)), No Load.

Results

problem,

report.

We have described above the formulation of the foil bearing

using notation and approach consistent with the rest of this

In our preliminary work we have used a somewhat different formulation

and notation. At that time, the initial conditions, Eqs. (3. 2. 7) through

(3. 2. 9) had not yet been derived and only the case, C = 0, was calculated.

Due to the limited applicability of the foil bearing model (no hub load

transmission), it has not been pursued any further and is presented in

Fig. 6. 4. 1 in the original form. The notation used in Fig. 6. 4. 1 differs

from that of this work. It is defined in the left hand side of the following relations

in terms of our present notation

H _ & (6.4. 5)

(6. 4. 6)
--
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(6. 4. 7)

(6. 4. 8)

Fig. 6. 4. 1 was originally designed to be used with prescribed

pressure _r. and clearance H according to the following recipe.1 i

(a) H_' - /-- /"_

(c) With the value of H.H. find from Fig.
1 1

; H i _ H.,

6. 4. 1 the values of

(d)

(e) Choose the corresponding exit region curve.
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INLET

-1 -0.5 0 O.S

f
J

1 unit of

2.47

/
/

\

, d

I
L

I
J

/

EXIT

0.643

H* = 42.2_

I
2.47

0.643

10

8

6

4

2

0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

_=H
H*

H
--= H"
H*

Fig. 6. 4. 1 The Film Thickness Distribution and Its Derivatives

for the Foil Bearing Model with C = 0
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6. 5 Quasi Two-Dimensional Flow Coupled with Tire-Spring Model

Equations (See Section 2. 2; 5. 6. )

dTr-

_.l-. -',)+ <_-_,_c .,- ;) (6. 5. 1)

(6. 5. 2)

_:--< (,-_7
Vrw (6. 5. 3)

2

H=_o +£-W
2-

(6 5. 4)

Input Parameters

(, C, H*, KW, H ° (note W °
1

m )o

%v
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Boundary Conditions (integrating in the negative x-direction).

At the Exit:

= o (6. 5. 5)

e=-/ (6. 5. 6)

From Eqs. (6. 5. 3) and (6. 5. 5) it follows that

=- 3-
[<_ (6.5.7)

The value of H can be found from Eq.
e

can then be found from Eq. (6.5. 4).

(6. 5. 2). Finally, the value of Xe

At the inlet: The intersection of the solution of Eq. (6. 5. 1) and of Eq. (3, 2. 9)

determines the inlet point.

Output Parameters

H (from Eq. 3. 2. 8), L, and M.
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Results

In Fig. 6. 5. 1, typical results for the spring model are shown.

The distributions of pressure shape factor, deflection and relative gap size

are shown. It is seen that for small values of W (nearly rigid tire), theo

results are not qualitatively different from those for a rigid tire. When

W is increased, the pressure distribution shows spikes. This can be
o

explained by the fact that the model consists of independent springs.

Sharp pressure variations will cause sharp gap variations. The exit sub-

atmospheric pressure causes a local reduction of gap and restricts the flow.

This affects the whole pressure distribution. Had the springs been inter-

dependent, a local sharp variation in pressure would more smoothly distribute

its effect on the deflection. It is concluded, therefore, that a more elaborate

elastic model is needed to describe hydroplaning even qualitatively.

6.6 Quasi Two-Dimensional Flow Coupled with the Tire - Membrane

Model

Equations (See Section 2. 2; 5. 8. )

(6. 6. 2)

z. --
(6. 6. 3)
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Input Parameters

¢, C, H*, KT, KW, H °

Boundary Conditions (integrating in the negative x-direction)

At the exit:

X e = Trial Value

= O (6. 6. 4)

f_=-/ (6. 6. 5)

(6. 6. 6)

H is found from Eqs (6. 6. 5) and (6. 6. 2). H" is found from Eqs. (6. 6. 4)
e " - " e

and 6. 6. 3).

At the inlet: The intersection of the solution of Eqs. (6. 6. 1) through

(6. 6. 3) and Eq. (3. 2. 9) provides the inlet condition. The slope continuity

requirement for the inlet region must also be satisfied, i. e.,

= V /<r 2. -
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of X
e

This requirement may be used to determine the correct value

by trial and error.

Output Parameters:

H (from Eq.
oo

(3. 2. 8)), L, and M.

Results

The above formulation has been programed for numerical solution

but results have not yet been obtained.

6.7 Quasi Two-Dimensional Flow Coupled with the Tire Shell Model.

Equations (See Section 2. 2; 5.7. )

(6. 7. l)

ft. h '_= 5 -_- -_ (6.7.2)

where G(x, _) is defined in Eq (5.7. 43) and depends on the parameters

KT, KW, KD.
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Input Parameters

c, C, H*, KT, KW_ KD,
H

O

Boundary Conditions and Procedure

Assume H = Hl(X) (trial distribution}. At the exit:

= 0
e

The value of H is found from Eq. (6. 7. 2) and the corresponding value
e

of X from the trial distribution. Integration of Eq (6. 7. 1) supplies a
e

relation between _' and H. The attachment point (_'i' H.) must belong1

to this family.

At the inlet: Eq. (3. 2. 9) supplies a second relation between

Y. and H. so that the inlet point X. is determined.
1 1 1

Now then, Eq. (6. 7. 3) can be integrated to produce a new corrected

gap distribution H = H2(x) and thus the process may be repeated until input

distribution Hk(X) differs from the output distribution Hk _ l(X) by no more

than a prescribed error. Techniques for facilitating convergence will probably

have to be used.
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Output Parameters

H (from Eq. 3. 2. 8), L and M (Eqs. (5. 3. 1, 5. 3. 2))

The iterative process described above has been programmed

and considerable segments of the program have been debugged. Results

have not yet been obtained.

6.8 Quasi Three-Dimensional Flow Coupled with a Rigid Cylindrical

Tire

Equations (See Section 2. i; 5. 4. )

9L + --
E_,.7 -H- _->< (6. 8. 3)

This is a rather complicated set of nonlinear partial differential

equations. The first question which one faces in attempting to devise a

solution technique is the type of the equations. This may be answered by

finding the lines along which discontinuities in the solution propagate,

namely the characteristics.

82
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Given f, g, _ralong a line of slope dX/dZ passing at a point

X, Z,what are the partial derivatives _x ) "Dz at the point ? To

answer this question, we write Eqs. (6.8. I) to (6.8. 3) and the expressions

for the differentials df, dg, d_ in the matrix form

_ 15- O

C.-

I o o I 0 o

© O

o

C> O O O

JX" ,_z o o

DTT

I-)Z

2..t-t _,_,

c%'% * £. 27

U
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A unique solution for the derivatives exists only if the determinant of

the coefficients does not vanish. For those lines of slope, dX/dZ, if

any, in which the determinant vanishes, the derivatives are non-unique

and discontinuities in the derivatives across the line may occur. In our

case, the determinant of the coefficients vanishes along the characteristic

curve whose local slope is.

(6.8.5)

Thus the equations have a single real characteristic and two imaginary

ones. The third order system is thus partly an initial value problem and

partly a boundary value problem.

By moving the pressure derivatives to the right-hand side and

pairing the first and fourth equation and the second and fifth equation in

the matrix, it may be seen that along the characteristic curve

(6. 8.6)

(6. 8. 7)
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We can conclude that for a given _ (X_ Z), it is sufficient to know f and g

at a point in order to find f and g along the characteristic curve passing

through that point. This exhibits the initial-value problem character of

the equations.

On the other hand, by differentiating Eq. (6. 8. 1) and (6. 8. 2)

with respect to X and Z respectively, adding and using Eq. (6. 8. 3) we

find.

4-
clt 3 _X_ + __ 2W -  a,J 9z

+

(6. 8. 8)

This is a Poisson's equation and can be solved for a given f(X, Z), g(X, Z)

and a prescribed ,r on the boundary. This exhibits the boundary-value-

problem character of the equations.

Thus we have a basis for an iterative procedure: Given _ - find

f and g. Given f and g, find _. It should be stressed that the problem has

not been well set in the above in terms of boundary conditions. We will

only say that we have attempted a number of solutions by supplementing the

above procedure with additional conditions. Details are not reported here since

results have not been obtained.

One of the approaches which were studied resulted in the following

analysis which is of some interest. Consider a flat plate of finite width and length

moving over a layer of fluid of uniform height h. Side flow is allowed.
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Eqs. (2. 1. 13)through (2. 1. 15) become:

(6. 8. 9)

(6.8. 10)

_LI _ _ =-0 (6.8.11}

The boundary conditions are p : Pa on the boundaries and f prescribed on

those sections of the boundary where the flow enters. If f = 0 is prescribed

at the entrance (corresponding to Couette flow), the solution of the above

system is p - Pa' f ---0; g -=0.

Suppose, now,

some f= f where f <<
o o

that the flow at the entrance is prescribed by

2. 5. The equation may be linearized as follows:

(6.8.12)

(6. 8. 13)

(6. 8. 14)
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The solution is:

(6.8.15)

_ _O

(6. 8. 16)

- _4 F,U

(6.8. 17)

This means that the flow tends to Couette flow in a transition

layer of the order

6.9 Quasi Two-Dimensional Non-Viscous Flow Model Coupled with the

Spring Tire Model

Equations (See Section 2.4; 5. 6)

(Continuity) (6.9. 1)

C 4-"ITs= I (Bernoulli) (6.9. 2)
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(Geometry) (6. 9 3)

(Elasticity) (6. 9. 4)

Input Parameters

/4°

(Note: Wo : 1/Kw" W is a measure of the compliance of the tire. )
0

Solution

The pressure distribution fr = _(X) becomes:

In order for a solution to exist, the right hand side of this equation must go

through zero. Otherwise, it would mean that no pressure exists corresponding

to the tire center X = O. X = 0 is a point of symmetry for the pressure distri-

bution. By finding the minimum point of the right hand side of Eq. 6. 9. 5 and the

condition for this minimum to be less than or equal to zero, we find that solution

will exist only if

(6. 9. 6)
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This leads to the following interesting conclusions, which may be

further understood from Fig. 6. 9. 1

When W = 0 (perfectly rigid tire); solutions alwasy exist.
O

WhenW >0 : If C _ l, solution can exist onlyforW
O O

less than some maximum value. On the other hand, if C > l, there is

a finite range of W for which no solution exists. For values higher than
o

some threshold or lower than some threshold value, solutions exist.

Physically, if C < 1, only convex tire shapes can exist. When flexibility

is too high, the tire contacts the ground, and solutions do not exist.

If C > l, both concave and convex tire shapes can exist, depending on the

degree of tire flexibility.

Some solution curves are shown in Fig 6. 9. 2. All the cases are

at equal Ho, I.e. the tire center is at a fixed level and the fluid pressure

may load it either up or down. The parameter which distinguishes the

cases from one another is the degree of flexibility W .
O

In Fig. 6. 9. 2-a, the contour of a rigid tire (W = 0) is shown. In
o

this case the pressure drops due to acceleration and reaches a minimum towards

the center of the tire.

In Fig. 6. 9. 2-b a somewhat flexible tire is considered (W =
O

It is seen that the pressure drops further close to the tire center.

o. oos).

When W is large enough, the pressure drops to such a low level thato

a "negative load" is locally produced and no solution according to our model

is possible. This, however is only a hypothetical situation, since long before

such an occurrence viscous effects will become important and the model

discussed in this section will break down.
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\

C=l.O

f

\
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J

_f

\
0 10 20 W 30 40

0

Fig. 6.9.1 Conditions for Existence of Solution for the Planar Friction

less Flow Approximation Coupled with the Tire Spring Model.

(Each curve separates the region above it, for which a solu-

tion exists, and the region below it, for which a solution does n

not exist. )
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X 0
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2Ho_ Ho

I

-0.10

Fig. 6. 9. 2 Typical Solutions for the Planar Frtctionless Flow

Approximation Coupled with the Tire-Spring Model
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Finally, Fig. 6. 9. 2-c shows a highly flexible tire in which , due

to compliance, the film becomes divergent causing a peak of the pressure

at the center, and further increase in load capacity. This is qualitatively

the situation described by the NASA formula [ 9] which couples hydroplaning

with flexibility.
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